Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Cancer ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658775

RESUMO

In this prospective, interventional phase 1 study for individuals with advanced sarcoma, we infused autologous HER2-specific chimeric antigen receptor T cells (HER2 CAR T cells) after lymphodepletion with fludarabine (Flu) ± cyclophosphamide (Cy): 1 × 108 T cells per m2 after Flu (cohort A) or Flu/Cy (cohort B) and 1 × 108 CAR+ T cells per m2 after Flu/Cy (cohort C). The primary outcome was assessment of safety of one dose of HER2 CAR T cells after lymphodepletion. Determination of antitumor responses was the secondary outcome. Thirteen individuals were treated in 14 enrollments, and seven received multiple infusions. HER2 CAR T cells expanded after 19 of 21 infusions. Nine of 12 individuals in cohorts A and B developed grade 1-2 cytokine release syndrome. Two individuals in cohort C experienced dose-limiting toxicity with grade 3-4 cytokine release syndrome. Antitumor activity was observed with clinical benefit in 50% of individuals treated. The tumor samples analyzed showed spatial heterogeneity of immune cells and clustering by sarcoma type and by treatment response. Our results affirm HER2 as a CAR T cell target and demonstrate the safety of this therapeutic approach in sarcoma. ClinicalTrials.gov registration: NCT00902044 .

2.
Trends Plant Sci ; 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38092630

RESUMO

Pathogens rely on their effector proteins to colonize host plants. These effectors have diverse functions. A recent study by Li et al. highlights the significance of protein modularity in generating functional diversity among Phytophthora effectors. It underscores the sophisticated tactics that phytopathogens adopt to alter host cellular processes.

3.
3 Biotech ; 13(2): 49, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36685317

RESUMO

Ascochyta blight disease is a devastating disease caused by the fungal pathogen Ascochyta rabiei that threatens chickpea production around the globe. Endocytic mechanism has a significant role in fungal growth and virulence. The underlying biology of biogenesis of central component of endocytosis viz Rab5 vesicles, is not completely understood. The involvement of F-BAR domain containing protein (ArF-BAR) in various cellular processes that collectively make ArF-BAR as an important virulence determinant. Here, we report that ArF-BAR is involved in biogenesis and motility of early endosome. In the absence of ArF-BAR gene (Δarf-bar), fungal mutants exhibited reduced number of EGFP coated ArRab5 vesicles, along with the considerable reduction in their dynamics. Here, we show that ArF-BAR interacts with clathrin light chain (ArCLC), specifically with its F-BAR domain. These findings suggests the novel role of ArF-BAR in biogenesis and dynamics of early endosome. Additionally, ArF-BAR is involved in clathrin-mediated mechanism of endocytosis which is required for host infection and disease development. Identification of this pathway offers new impending targets for disease intervention in plants. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-022-03451-5.

4.
Plant Cell ; 35(3): 1134-1159, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36585808

RESUMO

Fungal pathogens deploy a barrage of secreted effectors to subvert host immunity, often by evading, disrupting, or altering key components of transcription, defense signaling, and metabolic pathways. However, the underlying mechanisms of effectors and their host targets are largely unexplored in necrotrophic fungal pathogens. Here, we describe the effector protein Ascochyta rabiei PEXEL-like Effector Candidate 25 (ArPEC25), which is secreted by the necrotroph A. rabiei, the causal agent of Ascochyta blight disease in chickpea (Cicer arietinum), and is indispensable for virulence. After entering host cells, ArPEC25 localizes to the nucleus and targets the host LIM transcription factor CaßLIM1a. CaßLIM1a is a transcriptional regulator of CaPAL1, which encodes phenylalanine ammonia lyase (PAL), the regulatory, gatekeeping enzyme of the phenylpropanoid pathway. ArPEC25 inhibits the transactivation of CaßLIM1a by interfering with its DNA-binding ability, resulting in negative regulation of the phenylpropanoid pathway and decreased levels of intermediates of lignin biosynthesis, thereby suppressing lignin production. Our findings illustrate the role of fungal effectors in enhancing virulence by targeting a key defense pathway that leads to the biosynthesis of various secondary metabolites and antifungal compounds. This study provides a template for the study of less explored necrotrophic effectors and their host target functions.


Assuntos
Ascomicetos , Cicer , Fatores de Transcrição , Ascomicetos/genética , Ascomicetos/metabolismo , Cicer/genética , Cicer/metabolismo , Cicer/microbiologia , Lignina/metabolismo , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
5.
J Fungi (Basel) ; 8(12)2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36547579

RESUMO

The corm rot of saffron caused by Fusarium oxysporum (Fox) has been reported to be the most destructive fungal disease of the herb globally. The pathogen, Fusarium oxysporum R1 (Fox R1) isolated by our group from Kashmir, India, was found to be different from Fusarium oxysporum f.sp. gladioli commonly reported corm rot agent of saffron. In the present study, Fox R1 was further characterized using housekeeping genes and pathogenicity tests, as Fusarium oxysporum R1 f.sp. iridacearum race 4. Though Fox R1 invaded the saffron plant through both corm and roots, the corm was found to be the preferred site of infection. In addition, the route of pathogen movement wastracked by monitoring visual symptoms, semi-quantitative PCR, quantitative-PCR (q-PCR), real-time imaging of egfp-tagged Fusarium oxysporum R1, and Fox R1 load quantification. This study is the first study of its kind on the bidirectional pathogenesis from corm to roots and vice-versa, as the literature only reports unidirectional upward movement from roots to other parts of the plant. In addition, the colonization pattern of Fox R1 in saffron corms and roots was studied. The present study involved a systematic elucidation of the mode and mechanism of pathogenesis in the saffron Fusarium oxysporum strain R1 pathosystem.

6.
PLoS Genet ; 17(5): e1009137, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33999937

RESUMO

Polarized hyphal growth of filamentous pathogenic fungi is an essential event for host penetration and colonization. The long-range early endosomal trafficking during hyphal growth is crucial for nutrient uptake, sensing of host-specific cues, and regulation of effector production. Bin1/Amphiphysin/Rvs167 (BAR) domain-containing proteins mediate fundamental cellular processes, including membrane remodeling and endocytosis. Here, we identified a F-BAR domain protein (ArF-BAR) in the necrotrophic fungus Ascochyta rabiei and demonstrate its involvement in endosome-dependent fungal virulence on the host plant Cicer arietinum. We show that ArF-BAR regulates endocytosis at the hyphal tip, localizes to the early endosomes, and is involved in actin dynamics. Functional studies involving gene knockout and complementation experiments reveal that ArF-BAR is necessary for virulence. The loss-of-function of ArF-BAR gene results in delayed formation of apical septum in fungal cells near growing hyphal tip that is crucial for host penetration, and impaired secretion of a candidate effector having secretory signal peptide for translocation across the endoplasmic reticulum membrane. The mRNA transcripts of ArF-BAR were induced in response to oxidative stress and infection. We also show that ArF-BAR is able to tubulate synthetic liposomes, suggesting the functional role of F-BAR domain in membrane tubule formation in vivo. Further, our studies identified a stress-induced transcription factor, ArCRZ1 (Calcineurin-responsive zinc finger 1), as key transcriptional regulator of ArF-BAR expression. We propose a model in which ArCRZ1 functions upstream of ArF-BAR to regulate A. rabiei virulence through a mechanism that involves endocytosis, effector secretion, and actin cytoskeleton regulation.


Assuntos
Actinas/metabolismo , Ascomicetos/citologia , Ascomicetos/patogenicidade , Cicer/microbiologia , Endocitose , Proteínas Fúngicas/metabolismo , Ascomicetos/genética , Ascomicetos/metabolismo , Núcleo Celular/metabolismo , Citoesqueleto/metabolismo , Endocitose/genética , Endossomos/metabolismo , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Lipossomos/metabolismo , Mutação , Estresse Oxidativo , Doenças das Plantas/microbiologia , Regiões Promotoras Genéticas/genética , Virulência/genética
7.
Nat Commun ; 11(1): 3549, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32669548

RESUMO

Refractory metastatic rhabdomyosarcoma is largely incurable. Here we analyze the response of a child with refractory bone marrow metastatic rhabdomyosarcoma to autologous HER2 CAR T cells. Three cycles of HER2 CAR T cells given after lymphodepleting chemotherapy induces remission which is consolidated with four more CAR T-cell infusions without lymphodepletion. Longitudinal immune-monitoring reveals remodeling of the T-cell receptor repertoire with immunodominant clones and serum autoantibodies reactive to oncogenic signaling pathway proteins. The disease relapses in the bone marrow at six months off-therapy. A second remission is achieved after one cycle of lymphodepletion and HER2 CAR T cells. Response consolidation with additional CAR T-cell infusions includes pembrolizumab to improve their efficacy. The patient described here is a participant in an ongoing phase I trial (NCT00902044; active, not recruiting), and is 20 months off T-cell infusions with no detectable disease at the time of this report.


Assuntos
Imunoterapia Adotiva/métodos , Neoplasias Musculares/terapia , Recidiva Local de Neoplasia/terapia , Receptor ErbB-2/imunologia , Rabdomiossarcoma/terapia , Linfócitos T/transplante , Biópsia , Medula Óssea/patologia , Criança , Ensaios Clínicos Fase I como Assunto , Humanos , Masculino , Neoplasias Musculares/imunologia , Neoplasias Musculares/patologia , Recidiva Local de Neoplasia/imunologia , Receptores de Antígenos Quiméricos/imunologia , Indução de Remissão/métodos , Rabdomiossarcoma/imunologia , Rabdomiossarcoma/secundário , Linfócitos T/imunologia , Linfócitos T/metabolismo , Transplante Autólogo/métodos , Resultado do Tratamento
10.
Nature ; 561(7723): 331-337, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30185905

RESUMO

Successful T cell immunotherapy for brain cancer requires that the T cells can access tumour tissues, but this has been difficult to achieve. Here we show that, in contrast to inflammatory brain diseases such as multiple sclerosis, where endothelial cells upregulate ICAM1 and VCAM1 to guide the extravasation of pro-inflammatory cells, cancer endothelium downregulates these molecules to evade immune recognition. By contrast, we found that cancer endothelium upregulates activated leukocyte cell adhesion molecule (ALCAM), which allowed us to overcome this immune-evasion mechanism by creating an ALCAM-restricted homing system (HS). We re-engineered the natural ligand of ALCAM, CD6, in a manner that triggers initial anchorage of T cells to ALCAM and conditionally mediates a secondary wave of adhesion by sensitizing T cells to low-level ICAM1 on the cancer endothelium, thereby creating the adhesion forces necessary to capture T cells from the bloodstream. Cytotoxic HS T cells robustly infiltrated brain cancers after intravenous injection and exhibited potent antitumour activity. We have therefore developed a molecule that targets the delivery of T cells to brain cancer.

12.
PLoS Pathog ; 12(6): e1005678, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27304426

RESUMO

Spores of Bacillus anthracis, the causative agent of anthrax, are known to persist in the host lungs for prolonged periods of time, however the underlying mechanism is poorly understood. In this study, we demonstrated that BclA, a major surface protein of B. anthracis spores, mediated direct binding of complement factor H (CFH) to spores. The surface bound CFH retained its regulatory cofactor activity resulting in C3 degradation and inhibition of downstream complement activation. By comparing results from wild type C57BL/6 mice and complement deficient mice, we further showed that BclA significantly contributed to spore persistence in the mouse lungs and dampened antibody responses to spores in a complement C3-dependent manner. In addition, prior exposure to BclA deletion spores (ΔbclA) provided significant protection against lethal challenges by B. anthracis, whereas the isogenic parent spores did not, indicating that BclA may also impair protective immunity. These results describe for the first time an immune inhibition mechanism of B. anthracis mediated by BclA and CFH that promotes spore persistence in vivo. The findings also suggested an important role of complement in persistent infections and thus have broad implications.


Assuntos
Antraz/imunologia , Fator H do Complemento/imunologia , Tolerância Imunológica/imunologia , Glicoproteínas de Membrana/imunologia , Esporos Bacterianos/imunologia , Animais , Antraz/metabolismo , Bacillus anthracis/imunologia , Bacillus anthracis/metabolismo , Fator H do Complemento/metabolismo , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Esporos Bacterianos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...